3D Astronomy Visualization

Project Proposal

MICHAELA VAN ZYLVZYMICO015, BILAL HASAN ASLAN ASLBIL001,and BHAVISH MOHEE MHXBHAO001, De-

partment of Computer Science, University of Cape Town, South Africa

1 PROJECT DESCRIPTION

Astronomy is a visual science that relies heavily on visualisation
and interpretation of data, as claimed by Rolowsky et al [11]. Mod-
ern telescopes like MeerKat, the Australian Square Kilometre Array
Pathfinder (ASKAP), the Large Synoptic Survey Telescope (LSST),
and the Square Kilometre Array (SKA) can all collect around giga-
bytes to terabytes worth of information. The actual dilemma faced
by astronomers during the past few decades is constructing the most
efficient and interactive model of visualising this data [3, 9]. As the
data sets become larger it becomes exponentially more difficult to
visualise the data and becomes less interactive as the data has to
be rendered in real-time. Through the research paper by Borkin et
al. [2], the advantages of utilizing 3D visualisation of astronomical
data was outlined and how this is nowadays accessible through the
advent of technology, especially because of the evolution through
multi-cores computers and highly performance Graphics Processing
Units (GPU). These technological tools will thereby allow graph-
ing data by rendering slices through data cubes along the different
multidimensional axes.

Consequently, through this project, we aim to achieve the devel-
opment of an interactive 3D visualisation model using CARTA in
order to effectively visualise large data cubes and interact with them
in real-time.

2 PROBLEM STATEMENT

Although there are some 3D visualization tools that can be used
for the visualisation of astronomy data, these tools often struggle
to facilitate interaction with data sets whose size can easily exceed
multiple client machines’ memory capacities. Due to the size of the
data sets the time period for processing and rendering the data in
real time often exceed an acceptable threshold for user interaction.
The majority of these tools use the client approach where whole data
sets are loaded into client memory, using only the client’s CPU’s and
available GPU’s for rendering and processing data which severely
limits the size of the data set that can be visualised. This approach
requires the larger data sets to be broken up into smaller ones to
be processed. An alternative to the client based approach (Figure
1) there is the server based approach (Figure 2) where the data set
is processed and rendered on the server and the frames from the
rendering are streamed to the client over a network. While this
approaches takes processing pressure off of the client’s machine the
main disadvantages that stem from this approach are that as the data
set become larger the longer the server takes to render the data and
the longer it takes for the user to receive feedback after interacting
with the data. This latency is compounded when considering the
additional time it take for the data to be transferred over a network.
The goal of this project is to determine which available libraries
can be used to implement a hybrid of the client and server based

Server

requests dataset

A

sends dataset

Renders the dataset in
the browser using the
client's GPU and the user
interacts with the model
in the browser

Client

Server

Fig. 1. The client based approach for the remote rendering of a data set.

1
Renders a high-resolution model 5

sends frames

.
-

X Displays the frames received
| by the server and provides a
X means of interacting with the
i model on the server

|
_ sends interaction instructions !
<

on the interaction instructions

Manipulates the model based
received by the client

Fig. 2. The server based approach for the remote rendering of a data set.

approaches as well as the feasibility of the server-client approach
for 3D visualisation of astronomical data sets. In order to achieve
these aims, the following research questions are proposed:

(1) How can the data be pre-processed using methods such as
mipmapping on the server-side of the system to increase the
speed of data processing and transfer?

(2) Which compression algorithms such as ZFP and SZ compress
the data the best in terms of speed and size for transfer over
a network form a server to a client?

(3) Which graphical rendering libraries such as VTK and XTK
libraries produce the best results in terms of speed of render-
ing?

(4) How can the client and server approaches be combined to
facilitate high-resolution data rendering over a network while
maintaining usability?

(5) How does network latency when rendering large volumes
of data using the hybrid model compare to the server-client
model such as implemented in the CARTA framework?

(6) Hoe does the hybrid model approach scale in terms of ren-
dering time, transfer latency, and time from user interaction
and feedback over increasingly larger data sets?

3 PROCEDURES AND METHODS
3.1 Implementation Strategy

The combination of the client and server based approaches can
be combined in a hybrid approach where characteristics of each
approach is combined in a manner that mitigate the disadvantages
from each. At the beginning of the interaction the server streams a
compressed image of a high resolution model constructed on the
server as well as compressed downsized pre-processed volume data
to the client. When the client initiated an interaction with the model
the high resolution image is switched with a volume model that is
rendered in the browser using the volume data sent with the image.
The placeholder model remains in the window until the interaction
stops, the transformations of the model are sent to the server where
the full resolution model is rendered and the high resolution is sent
to the client, this process is repeated for every interaction. As soon
as the the interaction ceases the server streams high resolution
image data once again.

3.2 Methods

Based on the research questions mentioned in the previous section,
an adequate amount of planning is required to ensure the success
of the project. Through periodic virtual meetings, we were able to
analyse and discuss the most appropriate methods and procedures
that we will adopt throughout the development of this project. Our
goal is to develop interactive 3D astronomy visualisation using the
CARTA client-server architecture for processing and rendering the
data cubes. Due to numerous limitations of a fully server-side ren-
dering system and that of a fully client-side rendering model, we
decided to adopt a more hybrid system approach in order to nul-
lify the drawbacks of having a completely one-sided structure. The
server side uses images on a Portable Operating System Interface
(POSIX) compatible file system in FITS [12] and HDF5 [5] (IDIA
schema) format for faster access to the data as the client does not
need to upload the file for each visualisation procedure. The entire
process begins when the client requests for a particular image on the
browser interface. The server is made aware of this request via the

Preprocess high resolution datacubes |
into low resolution 3D models '

il

Toop

| <Request to see certain datacube in 30

| _Informs server which datacube is selected

Render high resolution mini datacube

1 Send compressed low resolution 3D model of that datacube

| send compressed high resolution image

Render low
resolution 3D model

Display high
resolution image

Too) T
| Wants to interact with the low-resolution 3D model |

Displays the low resolution 3D model

Interacts with low resolution 30 model

200ming, rotating or adjusting the

This interaction involves the user
transfer function of the model

User stops the interaction

| Requests high resolution image for specific coordinates

This request's coordinates specifies how
the high resolution model needs to be
manipulated and cropped

| If requested coordinates are not in current high resolution
1 3D render then render required high resolution mini datacube

der afdbre
to requested coordinates

Creates high resol
30

1 Sends new compressed high resolution image data

Display high
resolution image

|_End session !

Fig. 3. Hybrid rendering on a client-server model.

communication layer API (Application Programming Interface) [1].
The server then fetches the image for pre-processing and compres-
sion. From an overall perspective, the server mainly performs two
tasks. Firstly, it manipulates the data file in such a way that the
high-performance server system does the heavy lifting work on
the subset of the large data cube, renders it into a high-resolution
image and sends the latter over for display on the client side. Con-
sequently, this method does not require the server to send over
gigabytes worth of data to the client for rendering. Now that the
user is able to visualise the data, interaction using intuitive moves
such as wheel scroll for zooming and click and dragging for rotation,
will be enabled for the user to take advantage of . At that point,
the server sends over a compressed version of the data cube to the
client which then renders the data using the GPU on the machine.
As this procedure is performed locally, interaction is expected to be
smooth as it does not require transferring chunks of data during
the interaction process for the server to render, as it would have
been in a fully server-side rendering system. This is an overview of
the entire visualisation process, but a more descriptive explanation
of our method and procedure is provided in the following sections
below.

3.2.1 Back-end. The back end is the server side of the CARTA sys-
tem where all the data processing occurs for visualisation. Since
CARTA was originally constructed in C++ programming language,
the latter will be used for further development to ensure high perfor-
mance and control over memory. C++ also supports many libraries
like the Visualisation toolkit (VTK) [7] and the Compute Unified
Device Architecture (CUDA) [8] which are crucial in this project
as they are very often associated with astronomy and visualisation.
After the user selects a data cube for visualisation on the client

side, the server is notified and starts processing the data by down-
sampling using lossy compression libraries like ZFP and SZ. This
compressed data is sent to the client for rendering and so, the user
will see a low-resolution version of the data cubes at first until the
high-quality image can be completely rendered by the server and
transferred through the network to the client side. Then, the client
will be allowed to interact with the model displayed on the client’s
screen using intuitive mouse scroll and click and drags or the wid-
gets found on CARTA’s browser interface at which point the local
low -resolution version of the data produced locally, takes over. The
user can also select the Region of Interest (ROI) which is a smaller
subset of the data which is targeted for observation. Whenever, the
user attempts to interact with the data cube and exceeds the current
screen parameters , the high-resolution model is replaced with a
low-resolution level of detail (LOD) model which is rendered by the
client’s GPU on the front-end browser. This method was chosen
as it enables the user to see the changes caused by the interaction
almost as soon as it is performed since data transfer through a net-
work to the server is not required for the rendering process for this
step. Shortly after the user stops interacting with the system for
about 200 milliseconds, an update notification is sent to the server
to acknowledge this step and proceeds to generating and stream-
ing across the high resolution image to the front-end browser. The
resolution sent over from the server will be down-sampled using
mipmapping [6] and sent to the client’s screen in order to have an
effective frame per second (FPS) as using the maximum resolution
of the picture would be considered as a waste of data as well as time
spent for transferring over the network as this resolution cannot
be displayed to its full potential due to the fixed level of detail of
the client’s screen. On the other hand, the minimalised compressed
version of data cube, which is displayed upon user interaction, has
to be comprehensible to the user in order to get the requested re-
sults and also has to project an interactive performance whereby
the display is updated almost as soon as the interaction is processed.
Therefore, experiments need to be performed to establish a balance
between the two sides and obtain reasonable latency hiding and the
understandable low-resolution level of detail.

3.2.2 Communication Layer API. In order to allow efficient com-
munication between the server and the client, a communication
layer comprising of an API has to be set up to send and receive
data between the two parties. Therefore, a compatible API frame-
work needs to be implemented that results in smooth data transfer
between the server and the client. Some popular examples of web
application API framework that can be applied in this project are
REST and gRPC. REST is a relatively easy-to-use framework that is
usually used in building web applications which is compatible with
the C++ environment of the CARTA back-end. On the other hand,
gRPC is also language agnostic and can therefore merge with the
back-end to communicate with the front end. However, according
to Chamas et al. [4], gRPC is approximately 7 times faster than
REST for receiving data and approximately 10 times faster than
REST for sending data. Ideally, gRPC seems to be amply sufficient
to manage he back-end and front-end communication, however
throughout the development of this project, other technological

tools may be employed to achieve the functionalities required, es-
pecially when carrying data for streaming the data cubes and to
handle user interaction seamlessly.

3.2.3 Front-end. The front end is the client side where the user
can see and interact with the data generated. Several front-end li-
braries such as React, Vue and Angular exist which fits our purpose.
However, upon discussion and analysis, Vue was chosen to be used
for building the front-end framework as it is commonly used for
creating interactive user interface and naturally combines user inter-
action and behaviour functionality into its components. Concerning
the rendering for the visualisation of the compressed data cubes,
tool-kits such as VIK and XTK can be deployed. VTK is better sup-
ported by the whole system for rendering astronomy data cubes
whereas XTK is more lightweight and is able to use VIK file as
input for the rendering process. During the implementation phase,
the most efficient rendering method will be implemented so as not
to hinder the interactive flow of the system. Similar to CARTA’s
original design, our system will also contain several features and
widgets to interact with the data. These includes using the scroll
wheel for zooming in and out and click and dragging for rotating
around the data cube. As mentioned in the serve side section, upon
user interaction, the low-resolution model will take over for latency
hiding and will allow change to high resolution when the user stops
interacting for a short period of time. After selecting a particular
file as input, the user will be able to select a region of interest (ROI)
to examine that smaller subset in more detail. The server will be
notified of this update and will focus on processing the data for
that subset and render more rapidly and efficiently due to a smaller
model under inspection. Some experiments and testing will be per-
formed at this point to find out of the most human intuitive manner
to select the intended volume of data. As in CARTA, our model will
also provide the same colour mapping to vary the transfer function
for astronomers to utilize for searching for specific matter. Likewise,
histograms and wavelength graph will also be presented to the user.
The user will be able to interact with the diagrams as well to results
at fixed coordinates.

3.3 System Evaluation

There are three main challenges that we expect to encounter during
the development of this project and are as follows:

3.3.1 Network Latency. The latency depends on the distance be-
tween the server and the client. Latency is a major issue on long
distances and cannot result into an unusable product due to lagging
when interacting with the data. Interaction has to be smoothing
order to encourage usage of 3Davis as an astronomy visualisation
tool. Moreover, the transition from low-resolution image rendered
by the front-end to the high-resolution image rendered by the server
has to be tackled accordingly to match the corresponding pixels
and frames. Therefore, we intend on implementing latency hiding
techniques and test the system by varying the latency factor. If in-
teraction is considered to be an adequately smooth flow, the system
will be deemed as a success.

3.3.2 Bandwidth Usage. As this project involves a client-server ar-
chitecture, we also need to consider the network over which data is

transferred. Therefore, we will also test the system on different net-
work bandwidths to experiment the limit of the system’s usability.

3.3.3 Data Size. As modern telescopes continue to gather images
of increasing quality, our system needs to be able to adapt to those
enormous size as input for processing. Consequently, as a testing
objective, we will vary the image size to experiment how the server
handles the data processing and how the client manages the render-
ing and the interactions.

In addition to these benchmarks testing, we also intend to com-
pare our system to other remote visualisation tools used in the
astronomy industry and try to conform to the recent trends and
functionalities.

4 ETHICAL, PROFESSIONAL, AND LEGAL ISSUES

There will not be tests conducted on users as the construction of
this prototype is a proof of concept test and therefore we forgo
any ethical issues involved in trials with a user group. However, if
we deem later in development that user tests are required, we will
reevaluate this section.

3DAVis will be developed under the MIT license for open source
software and all the packages and libraries used in the construction
and implementation of the system are confirmed to be open source
as well. It is in the interests of the communities that helped to create
these libraries and continually support the software free of charge
that we keep our code open source as well.

5 RELATED WORK

The key works that were discussed are centered around the individ-
ual parts of the process of remotely rendering and visualising radio
astronomy data. These parts relate to the structure of server client
model, processing radio astronomy data files, compression of data
for transfer over a network and the visualisation of scientific data
in the context of a web browser.

To implement this system there are many existing packages and
libraries available for each section, each with their own characteris-
tics therefore the libraries that are chosen must be measured against
each other using variables such as speed, size and scalability without
sacrificing quality and accuracy of the visualisation.

There are various packages dedicated to rendering three dimen-
sional graphics in a browser. Volume rendering is the preferred
method for rendering astronomical data, where data points are ren-
dered as three dimensional pixels (voxels) within a space and each
point is given visual characteristics such as colour and opacity ac-
cording to data parameters attached to the point. The technique is
well suited for visualisations which lack defined boundaries and is
thus appropriate for the diffuse nature of astronomical phenomena.
This method might not be the most efficient because of how the ren-
dering time for a dataset grows linearly with the size of the dataset.
The best lighting technique to complement the structure of volume
data is ray-casting, although it is computationally expensive and
will take up more time and processing power. The libraries available
for three dimensional visualisation that we are considering are all
cross platform, compatible with all major browsers and are open
source.

5.1 Visualisation Libraries

5.1.1 VTK and VTK js. Standing for The Visualisation Toolkit, is
maintained by Kitware and is open source under BSD license. It was
created for the purpose of displaying and manipulating scientific
data in a browser. It supports volume rendering, scientific visualisa-
tion and two dimensional plotting. VTK js is VIK’s accompanying
JavaScript library for rendering graphics in a browser and is avail-
able as packages on NPM for easy integration with a JavaScript
framework. VTK js is supported on Google Chrome and Firefox but
not yet on Safari and Microsoft Edge.

5.1.2 OpenGL and WebGL. A three dimensional graphics API based
on OpenGL, made and maintained by Kronos and has an open source
license under the copyright of The Khronos® Group Inc. It renders
three dimensional graphics in a browser by making use of the HTML
5 canvas element. These libraries are available as packages on NPM
for easy integration with the chosen JavaScript framework.

The next key aspect of the system that has to be considered is
the file format of the astronomical data. The file formats that are
commonly used to store astronomical data are FITS and HDF5. FITS
stores data in a sequential format where the data can only be ac-
cessed as a single stream which could affect the processing time of
the data where all the data has to be processed in order to compre-
hend the model and there is no way to access the data in a parallel
way. HDF5 addresses this by organising data into a hierarchical
structure. This addresses the shortcoming of FITS however FITS is
still the most commonly used and preferred format.

There is currently a selection of tools for the visualisation of radio
astronomy data such as CARTA, SAOImage DS9, KARMA for two
dimensional visualisation, and SlicerAstro for three dimensional
visualisation. However, none of these current tools support remote
visualisation and all their rendering is done on the client’s system.

For the visualisation data to be sent from the server to the client in
the fastest and most efficient manner some sort of data compression
needs to take place. The compression of visual data can be done
during rendering in the form of mipmaps where sections of the data
are down-sampled to a single pixel, thus minimising the rendering
of unnecessary detail and reducing the amount of data that needs
to be rendered. Mipmaps are suitable for two and three dimensional
visual data [10]. The data also need to be compressed for transfer
over a network, lossy compressing is best suited for the hybrid
approach because losing a few bits of information in a continuous
stream will not have a noticeable impact on system performance.
There are also various compression libraries available to add to the
implementation.

5.2 Compression Libraries

5.2.1 ZFP. Is a lossy compression format which is used for multi-
dimensional floating point arrays which achieves high compression
ratios and facilitates high data throughput.

5.2.2 SZ. Is a compression method for scientific data in the form
of floating point values.

The next aspect that had to be considered is how to showcase
the visualisation on the client’s browser. There are three major
frameworks present in the front end development sphere where they
all perform relatively the same functions and all using component
based approaches for constructing cross platform web applications.
Components are used to obtain input from the user and change their
behavior based on that input, this behaviour manifests as visual
feedback to the user. They also make it easy to reuse components
within the web application without repeating code.

5.3 Front-end JavaScript Libraries

5.3.1 React. A framework for creating interactive user interfaces
for web applications developed by Facebook. It combines the Ul and
behavioural functionality in its components and It operates under
the MIT open source license.

5.3.2 Vue. Is an open source JavaScript framework under the MIT
license. It also combines the user interaction and behaviour func-
tionality into its components. Functional parts of pages like buttons
and certain sections of a web page are implemented as separated
into self contained components and can be combined in new com-
ponents, this allows for components to be reused in various parts
of the web page therefore reducing code repetition. Vue can make
use of visualisation packages like VTK.js and WebGL by supporting
packages that integrate the packages with the framework structure.

5.3.3 Angular. A JavaScript framework developed by Google un-
der the MIT open source license and is much like Vue and React.
Angular however, separates the UI and behavioural elements in its
components.

The final aspect of the system that must be considered is how
to implement the server where the majority of the processing will
take place. There are also many libraries in various languages to
consider, most of these libraries are open source and support cross
platform development.

5.4 Web Application Libraries

5.4.1 Node.js. An open source Javascript library for accelerated
building of web applications and is characterised by its ease of use
and speed of implementation. Additional libraries and functionality
can be added through the NPM package manager.

5.4.2 Drogon. A C++ HTTP application framework under the open
source MIT license. Has much of the same functionality and struc-
ture of Node.js and has a large community for development support.

5.4.3 Crow. This micro-framework is built on C++ and functions
the same as Flask for Python where it does not require particular
tools or libraries to be included to operate, it also has no database
abstraction layer, form validation or any other components that
require third party libraries to provide common functions. It is also
extremely fast due to its pared back architecture.

5.4.4 Django. Is a web application framework based on python
and follows the model-template-view architecture pattern for rapid
and easy application construction. It characterises itself as being
fast, secure, and scalable and is under the open source 3-clause BSD
license.

6 ANTICIPATED OUTCOMES

We expect to create a proof of concept for 3DAVis and showcase how
it is an efficient method for remote rendering of three dimensional
radio astronomy data, implemented on the server-client architec-
ture. It is also anticipated that it will be an effective tool for the
visualisation of scientific data. The initial implementation will be
tested on small data sets, the sizes of which will be increased to
observe how the system scales for larger data sets. Extremely large
data sets are commonplace in the radio astronomy field and so it is
imperative that the system maintains its performance as the data
sets become larger.

This system addresses a need prevalent in current astronomy data
exploration tools that are largely standalone client-based software
applications. The performance of these systems is dictated by the
client’s hardware capabilities. Taking the processing and storage of
the data away from the client’s system and pushing it to a powerful
server machine allows for much larger data cubes to be processed
and explored. This also opens up the larger astronomy community
to easier data cube exploration. Most available software also only
visualises the data in a two dimensional format whereas 3DAVis
will showcase the data in a three dimensional manner which is the
preferred manner in which to visualise astronomy data.

The primary factor by which we will be able to determine if the
implementation is a success is if the system scales efficiently and
maintains its performance with a large data cube. This example data
cube must be one that astronomers would actually want to use to
explore and interact with for knowledge discovery. The ultimate
goal is for 3DAVis to become a comprehensive data exploration tool
for astronomers. The risks for this project are outlined in a risk
matrix (Figure 2) which also includes how to monitor, mitigate, and
manage these risks.

7 PROJECT PLAN
7.1 Risks

The risks for this project are outlined in a risk matrix (Figure 4)
which also includes how to monitor, mitigate, and manage these
risks.

7.2 Timeline

Our project runs from 17th May up until 18th October. Our Gantt
chart (Figure 5) lists our project’s timeline in more detail.

7.3 Resources Required

Software :

o Javascript libraries (nodejs, threejs, vtkjs , etc.)
o C++

e Vue

e Draco, LZ4

o Github

Hardware :

e High-end computers with Graphics processing unit (GPU)
e Stable internet connection

Human resources :

Risk Probability | Impact |Monitoring Mitigation Management
1 |Unclear Scope of the 3 8 Update project supervisor Change work that has been done and |Have a meeting with project
project. frequently on the works thatis |try to keep as much as old work to supervisor, talk about desired
being focused. reduce time lost. scope and update current
2 |Spend too much time on out |6 4 Have more strict scopes. Make sure only required work done if |Group leader should be more
of scope functionalities. Gold deadlines are not met by group. strict on work done by group
Plating. members.
3 |Workload is unevenly 4 6 Regular meetings in group. Reduce the scope. Redistribute workload between
distributed among the group. Group leader communicates with members to equalize the
every group member about their workload
work.
4 | Project Code is not meeting |4 7 Throughout the project look for | Improve algorithms used, Use different | Make more research on
desired speed performance. various hottlenecks and highlight | libraries provide better efficiency. different libraries. Update
them. algorithms used.
5 |Not meeting deadlines on 3 7 Have regular meetings and If deadline is not met, update Gantt Increase daily work time until
Gantt chart. figure out delays early. chart accordingly. right targeted deadlines
reached.
6 |We are unable to developa |2 9 Regularly check how program Explain why project goals is not Closely follow why
solution that satisfies functions as a whole and meets |achievable by the algorithms/libraries |algorithms/libraries used over
to all performance goals used. Explain what could be changed |other algorithms/libraries and
or improved so in future same also test different libraries if
mistakes won't happen. possible.
7 | Team member drops out of |1 9 Maintain good communication Ensure that each member properly Let the supervisor know about
project and relationship among team understands other members' work. the situation,reduce the scope
members through out the and redistribute the workload
project.
Fig. 4. Anticipated risks that could possibly be encountered during the time of the project’s development
3D Astronomy Visualization
Project r 1
Prnject Pmp(sd N
Write Project Proposal Bhavish Mohee, Bilal Aslan, Michaela Van Zyl
Submit Project Proposal Bilal Aslan
Project Proposal Repsesantation -LBhavlsh Mofee. Bilal Aslan. Michaela Van Zyl
Revise Project Propasal -IBrzms Mohee, Bilal Aslan, Michaela Van Zyl
Submit Revised Project Proposal Bilal fslan
First Prototype
Develop Prototype Of Server Side I

Develop Prototype Of Server-Client Con... T
Develop Prototype Of Client Side
Connect 3 Prototypes Together
Initial Software Feasibility Demonstration
Further Improvments
Performance Testing
Reducing Bottenecks
Fixing Bugs
Further Improving And Testing
Submit Final Code
Demonstration Of Final Project
Final Report
Write Draft Of Final Report
Submit Draft Of Final Report
Complete Final Report
Submit Final Report
Poster and Website
Create Poster
Submit Poster
Create a Website
Submit Website Code

Bilal Aslan
Bhavish Mohea
Michaeta Van Zyl

Bhawvish Mohee, Bilal Aslan, Michagla Van Zyl
Bhavish Mohee, Bilal Aslan, Michaela Van Zyl

Bhavish Mohee, Bilal Aslan, Michaela Van'
Bhavish Mohee, Bilal Aslan, Michaela Van Zyl I

Bhavish Mohee. Bilal Aslan, Michaela Van Zyl
Bhavish Mohee, Bilal Aslan, Michaela Van Zyl

Bilal Aslan

Bhavish Mohee, Bilal ASIM

Bhavish Mohee] Bilal Aslan, Michaela Van Zyl

Bhavish Mohee, Bilal Aslan, Michaeia Man Zyl
Bhavish Mohes, Bilal Aslan, Michaeld Van Zyl

1

Bhavish Mohee, Bilal Aslan, Michaela Van Zyl

Bhavish Mohee, Bilal Aslan, Michasla Van Zyl

Bhavish Mohee, Bilal Aslan, Michacla Van Zyl [

Bilal Aslan

Bilal Aslan

Fig. 5. The timeline outlining the sequence of the deliverables and milestones as well as the amount of time that will be dedicate to each.

Various advisers are required to ensure progress is being made
on the project at all times. These include the project supervisor, Rob
Simmonds, to guide the project development, project advisers, An-
gus Comrie to provide advice and information on tools, algorithms,
libraries, etc.

Other resources:

7.4

e Astronomical data cubes

Deliverables and Milestones

e Project proposal - 4th till 21st June
e Initial software feasibility demonstration - 10th till 13th Au-

gust

Submission of draft final project paper - 6th September
Submission of final project paper - 17th September
Submission of final project code - 20st September
Demonstration of the final project - 4th till 8th October
Completion of the poster - 11th October

Completion of the web page - 18th October

7.5 Project Allocation

As it is mentioned in gantt chart, work will be split amongst the
team members in the following way:

Bilal Hasan Aslan will focus on the server-side of the project. He
will be responsible for preprocessing astronomical data to make
processing easier and processing data so that the front-end can
render the data. He also will be responsible for preparing requested
data when the interaction occurred on the render.

Bhavish Mohee will focus on the client-server interaction. He will
be responsible for sending/receiving data between client-server and
compression/decompression of the data.

Michaela Van Zyl will focus on the client side of the project. She
will be responsible for rendering received data from the server,
interactiveness of the render, User-friendly GUI, and other GUI
parts of the render to display extra information.The risks for this
project are outlined in a risk matrix (Figure 2) which also includes
how to monitor, mitigate, and manage these risks.

REFERENCES

[1] Joshua Bloch. 2006. How to design a good API and why it matters. In Companion
to the 21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications. 506—507.

[2] Michelle Borkin, Alyssa Goodman, Douglas Alan, Jens Kauffmann, and Michael
Halle. 2007. Application of medical imaging to the 3d visualization of astronomy
data. In Proceedings of IEEE Visualization Conference.

[3] Fernando Camilo. 2018. African star joins the radio astronomy firmament. Nature
Astronomy 2, 7 (2018), 594-594.

[4] Carolina Luiza Chamas, Daniel Cordeiro, and Marcelo Medeiros Eler. 2017. Com-
paring REST, SOAP, Socket and gRPC in computation offloading of mobile appli-
cations: An energy cost analysis. In 2017 IEEE 9th Latin-American Conference on
Communications (LATINCOM). IEEE, 1-6.

[5] Angus Comrie, Kuo-Song Wang, Shou-Chieh Hsu, Anthony Moraghan, Pamela

Harris, Qi Pang, Adrianna Pinska, Cheng-Chin Chiang, Rob Simmonds, Tien-Hao

Chang, et al. 2021. CARTA: Cube Analysis and Rendering Tool for Astronomy.

Astrophysics Source Code Library (2021), ascl-2103.

Willem H De Boer. 2000. Fast terrain rendering using geometrical mipmap-

ping. Unpublished paper, available at http://www. flipcode. com/articles/article

geomipmaps. pdf (2000).

Marcus D Hanwell, Kenneth M Martin, Aashish Chaudhary, and Lisa S Avila.

2015. The Visualization Toolkit (VTK): Rewriting the rendering code for modern

graphics cards. SoftwareX 1 (2015), 9-12.

[8] Pawan Harish and Petter J Narayanan. 2007. Accelerating large graph algo-
rithms on the GPU using CUDA. In International conference on high-performance
computing. Springer, 197-208.

[9] Justin Jonas and MeerKAT Team. 2018. The MeerKAT radio telescope. Proceedings

of MeerKAT Science: On the Pathway to the SKA (2018), 25-27.

Koojoo Kwon, Eun-Seok Lee, and Byeong-Seok Shin. 2013. GPU-accelerated

3D mipmap for real-time visualization of ultrasound volume data. Computers

in Biology and Medicine 43, 10 (oct 2013), 1382-1389. https://doi.org/10.1016/j.
compbiomed.2013.07.014

E Rosolowsky,] Kern, P Federl, J Jacobs, S Loveland, J Taylor, G Sivakoff, and R

Taylor. 2015. The cube analysis and rendering tool for astronomy. Astronomical

Data Analysis Software an Systems XXIV (ADASS XXIV) 495 (2015), 121.

Donald Carson Wells and Eric W Greisen. 1979. FITS-a flexible image transport

system. In Image Processing in Astronomy. 445.

G

[7

[10

[11

[12

https://doi.org/10.1016/j.compbiomed.2013.07.014
https://doi.org/10.1016/j.compbiomed.2013.07.014

	1 Project Description
	2 Problem Statement
	3 Procedures and Methods
	3.1 Implementation Strategy
	3.2 Methods
	3.3 System Evaluation

	4 Ethical, Professional, and Legal Issues
	5 Related Work
	5.1 Visualisation Libraries
	5.2 Compression Libraries
	5.3 Front-end JavaScript Libraries
	5.4 Web Application Libraries

	6 Anticipated Outcomes
	7 Project Plan
	7.1 Risks
	7.2 Timeline
	7.3 Resources Required
	7.4 Deliverables and Milestones
	7.5 Project Allocation

	References

